Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masaaki Tomura ${ }^{\mathrm{a} *}$ and Yoshiro Yamashita ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ Institute for Molecular Science, Myodaiji,
Okazaki 444-8585, Japan, and bepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Correspondence e-mail: tomura@ims.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
R factor $=0.079$
$w R$ factor $=0.198$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

Tetrathiafulvalene with a fused pyrazine ring

The title compound, 2-(1,3-dithiol-2-ylidene)-2,3-dihydro-1,3-dithia-4,7-diazaindene (pyrazinotetrathiafulvalene), $\mathrm{C}_{8} \mathrm{H}_{4}-$ $\mathrm{N}_{2} \mathrm{~S}_{4}$, forms a head-to-tail type of $\pi-\pi$-stacking centrosymmetric dimer with an interplanar distance of 3.59 (1) \AA. The dimers form a two-dimensional column along the [101] direction.

Comment

It is known that $\mathrm{S} \cdots \mathrm{N}$ inter-heteroatom contacts work to construct unique molecular networks (Yamashita \& Tomura, 1998). In the title compound, (I) (Fig. 1), short $\mathrm{S} \cdots \mathrm{N}$ interheteroatom contacts $[3.10$ (1) \AA for $\operatorname{S} 2 \cdots \mathrm{~N} 1(x, y+1, z)$] are observed between the two $\pi-\pi$ dimers, as shown in Fig. 2. Two molecules in a dimer are related by an inversion center. A planar π-conjugated molecule prefers to overlap with a single molecule at both sides of the molecular plane to form a onedimensional column. In the two-dimensional column of (I), however, one dimer bridges two other dimers through the overlap of the pyrazine and 1,3-dithiole rings (Fig. 3). The angle between the dimers is $111(1)^{\circ}$. This type of unique multi-dimensional structure is important for the construction of organic conducting materials (Barclay et al., 2000; Kato et al., 1988; Morimoto \& Inabe, 1995; Tomura \& Yamashita, 2000; Yamashita et al., 1997, 1998).

(I)

Experimental

The title compound (I) was synthesized according to the literature method of Papavassiliou et al. (1988). Crystals of (I) were grown from a dichloromethane solution.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}_{4}$	$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=256.37$	Cu $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 24
$a=8.481(2) \AA$	reflections
$b=9.1928(9) \AA$	$\theta=9.7-42.8^{\circ}$
$c=12.8980(14) \AA$	$\mu=8.39 \mathrm{~mm}^{-1}$
$\beta=96.89(2)^{\circ}$	$T=296(2) \mathrm{K}$
$V=998.4(3) \AA^{3}$	Needle, orange
$Z=4$	$0.40 \times 0.05 \times 0.05 \mathrm{~mm}$

Received 19 February 2001
Accepted 26 February 2001
Online 9 March 2001

Figure 1
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.084$
\quad ometer	$\theta_{\max }=74.2^{\circ}$
ω scans	$h=-10 \rightarrow 10$
Absorption correction: ψ scan	$k=0 \rightarrow 11$
\quad (North et al., 1968)	$l=0 \rightarrow 16$
$T_{\text {min }}=0.134, T_{\text {max }}=0.679$	3 standard reflections
2060 measured reflections	frequency: 120 min
2026 independent reflections	intensity decay: 4.9%
663 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.198$
$S=1.07$
2026 reflections
127 parameters

Figure 2
Packing diagram of (I). Short $\mathrm{S} \cdots \mathrm{N}$ inter-heteroatom contacts are indicated by dotted lines.

Figure 3
Packing diagram of (I) viewed along the [101] direction. Three dimers (six molecules) are indicated.

[^0]
[^0]: Yamashita, Y. \& Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.
 Yamashita, Y., Tomura, M., Zaman, M. B. \& Imaeda, K. (1998). Chem. Commun. pp. 1657-1658.

